

R. NOREL 2438,

A Hands-On Approach

First Apple Edition

Arthur Luehrmann Herbert Peckham

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Guatemala Hamburg Johannesburg Lisbon London Madrid Mexico Montreal New Delhi Panama Paris San Juan São Paulo Singapore Sydney Tokyo Toronto

Contents

Scope and Sequence Chart xii

Taking Control 1

Session	1	The Computer in Your Life 2
Session	2	Getting Started 6
Session	3	Communicating with Your Computer 12
Session	4	Reading and Changing Programs 17
Session	5	Program Lines and Statements 23
Session	6	Writing a Program and Saving It 28
Session	7	Patterns with the Print Statement 33
Session	8	Entering the Design Program 37
		Part 1 REVIEW 38

PART	How Programs Work 41		
	Session 9	A Model of Your Computer 42	
	Session 10	Designing Your Own HELLO Program 5	1
	Session 11	System Programs: LIST and NEW 54	
	Session 12	Block Editing and Output Control 62	
	Session 13	The RUN Program 67	
	Session 14	Programming Project 74	
	Session 15	The Parts of Real Computers 75	
		Part 2 REVIEW 80	

Computer Graphics 83

Session 16 Introduction to Graphics 84

Session 17 How Graphics Works 88

Session 48 Graphics Project—1 96

Session 19 Computers for Art and Entertainment 98

Session 20 Graphics Project—2 102

Part 3 REVIEW 104

12

51

Software Tools: Subroutines 107

Session 21 Packaging Statements 108

Session 22 Reading and Changing Programs with Subroutines 114

Session 23 Top-Down Programming 117

Session 24 Practice with Subroutines 122

Session 25 How GOSUB and RETURN Work 125

Session 26 Exploring Subroutine Bugs 134

Session 27 The Model Computer and Subroutine Bugs 140

Session 28 Reading Complex Programs 154

Session 29 Subroutines: Tools for Thinking 157

Part 4 REVIEW 160

Naming Things: Data and Variables 163

Session 30 Similar Subroutines 164

Session 31 Why Variables Are Needed 168

Session 32 Exploring Variables 173

Session 33 How Variables Work 177

İΧ

Session 34	Input and Processing Data 186
Session 35	How Input and Processing Work 190
Session 36	Projects with Variables and Input 200
Session 37	The Information Machine 204
	Part 5 REVIEW 210

Control Statements, Numbers, and Functions $\ _{213}$

36331011 30	Changing Statement Order 214
Session 39	How the GOTO Statement Works 218
Session 40	Exploring Numbers 228
Session 41	How Numbers Work 233
Session 42	Exploring Functions 238
Session 43	How Functions Work 242
Session 44	A New Kind of Jump 247
Session 45	How the IF Statement Works 252
	Part 6 REVIEW 258

Control Blocks: The Loop 261

Session 46	Programs with Loops 262
Session 47	Structure of the Loop Block 263
Session 48	Programming Project: Loops 276
Session 49	Flowgraphs and Counting Loops 278
Session 50	Programming Project: Graphics 284
Session 51	What Computers Do Well 285
Session 52	FOR/NEXT Loop Abbreviations 200

Session 53	How the FOR and NEXT Statements Work 294
Session 54	Programming Project: FOR/NEXT

Part 7 REVIEW 302

Control Blocks: The Branch 305

Loops 301

Session 55	Structure of the Branch Block 306
Session 56	Exploring the Branch Block 312
Session 57	Nesting Program Blocks 315
Session 58	Programming Project: Nested Blocks 322
Session 59	Empty Branches 323
Session 60	Programming Project: Empty Branches 330
	Part 8 PEVIEW 331

	Putting It All Together 333		
PART 😅	Session 61	Playing a Game 334	
	Session 62	Entering the Program 339	
	Session 63	Designing the Subroutines 341	
	Session 64	Entering the Subroutines 346	
	Session 65	Refining the Program 349	
	Session 66	Final Changes 355	
	Session 67	Computers and Work 358	
		Part 9 REVIEW 363	

Index 364

Taking Control

Computers are everywhere. There is one in every digital watch and every pocket calculator. New cars, television sets, microwave ovens, and typewriters often have computers. Without computers, there would be no video games and no electronic toys. At the office, computers help people type, file information, and send messages back and forth. In the factory, computers guide robot arms that build cars.

Slaves or masters? Computers are making revolutionary changes in the way we live, play, and work. Are these good changes? Some people worry that we may become slaves to this new machine, totally dependent on it and no longer in control of our own lives. Others see a brighter future in which people are masters and machines are helpers. Which future will actually happen?

Computer literacy The answer to that question depends on what you decide to do about the computer. You can decide that computers are too difficult and leave the whole subject in the hands of the "experts." Or you can decide to learn about computers and take control of them yourself. In other words, you can become computer literate.

Literacy and freedom It took you many years to master the skills of reading and writing, but these skills gave you freedom. You do not have to depend on others to read street signs for you, or to tell you the latest news, or to write your letters to friends or representatives in Congress. You do not have to trust experts: You are literate. In the same way, your "math literacy" gave you freedom: You do not have to trust a math expert to tell you whether three oranges for 80 cents is a better buy than one orange for 25 cents. You are in control.

Controlling the computer Computer literacy is like these other skills: It takes time and practice to learn, but it puts you in control of the computer and frees you from having to depend on and trust a computer expert. When you become computer literate, you will know two important things: (1) what things a computer can do and (2) how to tell a computer to do the things you want it to do.